A Composite Scheme for Gas Dynamicsin Lagrangian Coordinates
نویسندگان
چکیده
One cycle of a composite finite difference scheme is defined as several time steps of an oscillatory scheme such as Lax–Wendroff followed by one step of a diffusive scheme such as Lax–Friedrichs. We apply this idea to gas dynamics in Lagrangian coordinates. We show numerical results in two dimensions for Noh’s infinite strength shock problem and the Sedov blast wave problem, and for several one-dimensional problems including a Riemann problem with a contact discontinuity. For Noh’s problem the composite scheme produces a better result than that obtained with a more conventional Lagrangian code.
منابع مشابه
Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates
For a Lagrangian scheme defined in the cylindrical coordinates, two important issues are whether the scheme can maintain spherical symmetry (symmetry-preserving) and whether the scheme can maintain positivity of density and internal energy (positivity-preserving). While there were previous results in the literature either for symmetry-preserving in the cylindrical coordinates or for positivity-...
متن کاملStability and Convergence of the Difference Schemes for Equations of Isentropic Gas Dynamics in Lagrangian Coordinates
For the initial-boundary value problem (IBVP) if isentropic gas dynamics written in Lagrangian coordinates written in terms of Riemann invariants we show how to obtain necessary conditions for existence of global smooth solution using the Lax technique. Under these conditions we formulate the existence theorem in the class of piecewise-smooth functions. A priori estimates with respect to the in...
متن کاملL∞ Solutions for a Model of Nonisothermal Polytropic Gas Flow
L∞ SOLUTIONS FOR A MODEL OF NONISOTHERMAL POLYTROPIC GAS FLOW∗ HERMANO FRID† , HELGE HOLDEN‡ , AND KENNETH H. KARLSEN‡ Abstract. We establish the global existence of L∞ solutions for a model of polytropic gas flow with varying temperature governed by a Fourier equation in the Lagrangian coordinates. The result is obtained by showing the convergence of a class of finite difference schemes, which...
متن کاملImprovement on spherical symmetry in two-dimensional cylindrical coordinates for a class of control volume Lagrangian schemes
In [14], Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates. These schemes use a node-based discretization of the numerical fluxes. The control volume version has several distinguished properties, including the conservation of mass, momentum and total energy and compatibility with the geometric conserva...
متن کاملA cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry
We develop a new cell-centered control volume Lagrangian scheme for solving Euler equations of compressible gas dynamics in cylindrical coordinates. Based on a local coordinate transform strategy, the scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. Unlike many previous area weighted schemes that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999